Range and Mechanism of Encoding of Horizontal Disparity
نویسندگان
چکیده
Prince, S.J.D., B. G. Cumming, and A. J. Parker. Range and mechanism of encoding of horizontal disparity in macaque V1. J Neurophysiol 87: 209–221, 2002; 10.1152/jn.00466.2000. The responses of single cortical neurons were measured as a function of the binocular disparity of dynamic random dot stereograms for a large sample of neurons (n 787) from V1 of the awake macaque. From this sample, we selected 180 neurons whose tuning curves were strongly tuned for disparity, well sampled and well described by one-dimensional Gabor functions. The fitted parameters of the Gabor functions were used to resolve three outstanding issues in binocular stereopsis. First, we considered whether tuning curves can be meaningfully divided into discrete tuning types. Careful examination of the distributions of the Gabor parameters that determine tuning shape revealed no evidence for clustering. We conclude that a continuum of tuning types is present. Second, we investigated the mechanism of disparity encoding for V1 neurons. The shape of the disparity tuning function can be used to distinguish between position-encoding (in which disparity is encoded by an interocular shift in receptive field position) and phase-encoding (in which disparity is encoded by a difference in the receptive field profile in the 2 eyes). Both position and phase encoding were found to be common. This was confirmed by an independent assessment of disparity encoding based on the measurement of disparity sensitivity for sinusoidal luminance gratings of different spatial frequencies. The contributions of phase and position to disparity encoding were compared by estimating a population average of the rate of change in firing rate per degree of disparity. When this was calculated separately for the phase and position contributions, they were found to be closely similar. Third, we investigated the range of disparity tuning in V1 as a function of eccentricity in the parafoveal range. We find few cells which are selective for disparities greater than 1° even at the largest eccentricity of 5°. The preferred disparity was correlated with the spatial scale of the tuning curve, and for most units lay within a radians phase limit. Such a size-disparity correlation is potentially useful for the solution of the correspondence problem.
منابع مشابه
Range and mechanism of encoding of horizontal disparity in macaque V1.
The responses of single cortical neurons were measured as a function of the binocular disparity of dynamic random dot stereograms for a large sample of neurons (n = 787) from V1 of the awake macaque. From this sample, we selected 180 neurons whose tuning curves were strongly tuned for disparity, well sampled and well described by one-dimensional Gabor functions. The fitted parameters of the Gab...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملA cortical model for binocular vergence control without explicit calculation of disparity
A computational model for the control of horizontal vergence, based on a population of disparity tuned complex cells, is presented. Since the population is able to extract the disparity map only in a limited range, using the map to drive vergence control means to limit its functionality inside this range. The model directly extracts the disparity-vergence response by combining the outputs of th...
متن کاملVertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation
Primary visual cortex is often viewed as a "cyclopean retina", performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore...
متن کاملUnderstanding the Cortical Specialization for Horizontal Disparity
Because the eyes are displaced horizontally, binocular vision is inherently anisotropic. Recent experimental work has uncovered evidence of this anisotropy in primary visual cortex (V1): neurons respond over a wider range of horizontal than vertical disparity, regardless of their orientation tuning. This probably reflects the horizontally elongated distribution of two-dimensional disparity expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000